Comparative Analysis of Various Hyperelastic Models and Element Types for Finite Element Analysis
Comparative Analysis of Various Hyperelastic Models and Element Types for Finite Element Analysis
Blog Article
This study aims to evaluate the precision of nine distinct hyperelastic models using experimental data sourced from the Body Powder existing literature.These models rely on parameters obtained through curve-fitting functions.The complexity in finite element models of elastomers arises due to their nonlinear, incompressible behaviour.To achieve accurate representations, it is imperative to employ sophisticated hyperelastic models and appropriate element types and formulations.
Prior published work has primarily focused on the comparison between the fitting models and the experimental data.Instead, in this study, the results obtained from finite element analysis are compared against the original data to assess the impact of element formulation, strain range, and mesh type on the ability to accurately predict the response of elastomers over a wide range of strain values.This comparison confirms that the element formulation and strain range can significantly influence result accuracy, yielding different bag responses in various strain ranges also because of the limitation with the curve fitting tools.